Multiplying Polynomials Notes

There are several ways we can multiply polynomials.

Method 1: <u>Distribution</u>: a monomial and a polynomial (special case of method 4)

Distribution of multiplication over addition: a(b + c) = _____

Apply to: $2x^{3}(x^{3} + 3x^{2} - 2x + 5)$

You try:

a)
$$4y(-y^3 - 2y - 1)$$

Method 2: Table Multiplication

Example: (x - 4)(3x + 2)

Create a table of products, and add them up:

You try:

a) (2x + 1)(x - 4)

_
_

Method 3: Vertical Multiplication

How would you multiply 285×14 ? Follow the same method for polynomials!

Multiply each column, aligning by like terms, then add products.

Example: (b² + 6b - 7)(3b - 4) b² + 6b - 7 X 3b -4

You try:

a)
$$(x^2 + 2x + 1)(x + 2)$$

Method 4: Horizontal Multiplication (Repeated Distribution)

Repeat the distributive process for each term in the polynomial.

```
Example: (2x^2 + 5x - 1)(4x - 3)
```

You try:

a) $(3n^2 + 4n)(-2n + 1)$

Method 5: FOIL (Make a "happy man"!)

Firsts Outsides Insides Lasts ** Only works when multiplying two binomials!**

You try: (3t - 4)(t + 6)

Practice:

Find the products. You may use any method you wish, but try a few of them to help you find your favorite!

1)
$$x(3x^2 - 2x + 1)$$
 2) $-w^3(w^2 + 3w)$

3)
$$(x + 1)(x - 4)$$
 4) $(3x - 2)(x + 5)$

5)
$$(w + 1)(w^2 + 2w + 1)$$
 6) $(8p - 3)(2p - 5)$

9)
$$(x+3)(x-3)$$
 10) $(x-4)(x-4)$