Unit 2 Study Guide

Section 1: Exponential Functions

1) The half life of caffeine is 5 hours. A grande Peppermint Mocha has 330 milligrams of caffeine. Let $Q(t)$ denote the amount of caffeine in your system I hours after consuming your grande Peppermint Mocha. For simplicity, assume the entire grande Peppermint Mocha is consumed instantly.
a. How many milligrams of caffeine will be in your system after 5 hours? After 10 hours? After 15
hours? 负hours $=330 \mathrm{mg} \quad 15$ hours $=82.5$
b. $Q(t)=Q_{0} \frac{1}{2}$. Find Q_{0} and $k . \quad Q(t)=330\left(\frac{1}{2}\right)^{t / 5}$

$$
\begin{aligned}
& \text { Qo is the ongines errout of caffeine } \\
& k \text { is the heit life of ceffeine }
\end{aligned}
$$

c. How many milligrams of caffeine will be in your system after 2 hours?

$$
\begin{aligned}
& Q(t)=330\left(\frac{1}{2}\right)^{2 / 5} \\
& 250.093 \mathrm{mg}
\end{aligned}
$$

2) A bacteria culture triples in size every 7 hours. Three hours from now, the culture has 8,000 bacteria. If $Q(t)$ denrotes the number of bacteria, then $Q(t)=Q_{0} e^{k t}$ for some number Q_{0} and for somenumber k.
a. Determine Q_{0} and k .
b. How many bacteria are there at time $t=0$?

3) The world population in 2000 was approximately 6.08 billion. The annual rate of increase was about 1.26%
a. Find the growth factor for the world population

$$
(1+.0126)=1.0126
$$

b. Suppose the rate of increase continues to be 1.26%. Write a function to model the world population.

$$
y=6.08(1+.0126)^{x}
$$

c. Let x be the number of years past the year 2000 . Find the world population in 2010 .

$$
\begin{aligned}
& y=6.08(1+.0126)^{10} \\
& 6.89 \text { billion people in } 2010
\end{aligned}
$$

*look over transformations for exponential functions

$$
\log _{b} y=x \Rightarrow b^{x}=y
$$

Section 2: Convert each equation to either logarithm equations or exponential functions

4) $\log _{2}(x)=4$

$$
2^{4}=x
$$

5) $\frac{1}{2}=\log _{x} 49$
$x^{\frac{1}{2}}=49$
6) $y=\log _{7} 9$

$$
7^{y}=9
$$

7) $6^{x}=53$

$$
\log _{6} 53=x
$$

8) $x^{5}=73$

$$
\log _{x} 73=5
$$

$$
\begin{aligned}
& \text { 9) } 98=7^{y} \\
& \log _{7} 98=y
\end{aligned}
$$

*look over definitions for common logarithm and natural logarithm

Section 3: Expand or Condense Logarithms

10) $3 \log _{9} 2-2 \log _{9} 5$
 $$
\log _{9} \frac{2^{3}}{5^{2}}
$$

12) $2 \log _{5} x+12 \log _{5} y$

$$
\log _{5}\left(x^{2} y^{12}\right)
$$

14) $\log _{7} \frac{x^{4}}{y^{2}}$

$$
4 \log _{7} x-2 \log _{7} y
$$

16) $\log _{6}\left(u v^{3}\right)^{2}$

$$
2 \log _{6} u+6 \log v \text { or }
$$

$2\left(\log _{6} u+3 \log v\right)$

Section 4: Solving Exponential and Logarithmic Equations

$$
\text { 18) } \begin{aligned}
3^{2 n-2} & =9 \\
3^{2 n-2} & =3^{2} \\
2 n-2 & =2 \\
\frac{2 n}{2} & =\frac{4}{2} \\
n & =2
\end{aligned}
$$

11) $\log _{6} x+\log _{6} y+6 \log _{6} z$ $\log _{6}\left(x y z^{6}\right)$
12) $\log _{3} 12+\log _{3} 7+4 \log _{3} 5$

$$
\log _{3}\left(12 \cdot 7 \cdot 5^{4}\right)
$$

15) $\log _{3}\left(z^{3} \sqrt{x \cdot y}\right)$

$$
\log _{3} z+\frac{1}{3} \log _{3} x+\frac{1}{3} \log _{3} y
$$

$$
\text { 17) } \log _{4}\left(12 \cdot 7^{2}\right)^{4} \frac{\log _{3} x}{3}+\frac{\log _{3} y}{3}
$$

$$
4 \log _{4} 12+8 \log _{4} 7
$$

19) $625^{3 x}=125^{x+1}$

$$
\begin{aligned}
& 5^{4(3 x)}=5^{3(x+1)} \\
& 4(3 x)=3(x+1) \\
& 12 x=3 x+3 \\
& -3 x=-3 x \\
& \frac{9 x}{9}=\frac{3}{9} \quad x=\frac{1}{3}
\end{aligned}
$$

Scanned by CamScanner
20) $e^{b-3}=6$
$\ln 6=b-3$
$\ln 6+3=b$
$b=4.792$
22) $-6+\log 6 v=-7$

$$
\begin{aligned}
& \log _{6} 6 v=-1 \\
& \frac{10^{-1}}{6}=\frac{6 v}{6} \quad v=\frac{1}{60}
\end{aligned}
$$

$2 4 \longdiv { 9 \operatorname { l o g } _ { 7 } (k - 3) } = \frac { 0 } { 9 }$
$\log _{7}(k-3)=0$
$7^{\circ}=k-3 \quad k=4$
Section 5: Compound Interest
21) $15^{x-8}+5=62$

23) $-\frac{5 \log _{9} 3 m}{-5}=\frac{5}{-5}$
$\log _{8} 3 m=-1$

$$
\frac{8^{-1}}{3}=\frac{3 m}{3}
$$

25) $\log _{4}(x+6)+\log _{4} x=2$

$$
\begin{aligned}
& \log _{4}(x+6(x))=2 \\
& \log _{4}\left(x^{2}+6 x\right)=2 \\
& 4^{2}=x^{2}+6 x \quad 0=x^{2}+6 x-16 \\
& 16=x^{2}+6 x \quad 0=(x-2 x x+8) \\
& 160 \quad x=2,-8
\end{aligned}
$$

26) If, at the end of two years, a savings account has a balance of $\$ 1172.60$, and the interest rate is compounded monthly at 3.2%, then what is the original amount deposited two years ago?

$$
\begin{aligned}
& y=P\left(1+\frac{r}{n}\right)^{n \cdot t} \\
& \frac{1172.60}{\left(1+\frac{.032}{12}\right)^{12.2}}=\frac{P\left(1+\frac{.032}{12}\right)^{12 \cdot 2}}{\left(1+\frac{.032}{12}\right)^{12.2}} \\
& P= 1099.99 \\
& 1100.00
\end{aligned}
$$

27) A teenager saved small dollar amounts throughout the school year and now has $\$ 712.00$. They can choose from two bank offers. The first is 5.3% compounded continuously for six years. The second is compounded quarterly for five years at 6.0%. Which account will yield the most money? What is the dollar amount difference between the accounts at the end of their terms?

$$
\begin{array}{rl}
y=P e^{r t} & y=P\left(1+\frac{r}{n}\right)^{n \cdot t} \\
y=712 e^{.053(6)} & y=712\left(1+\frac{.06}{4}\right)^{4.5} \\
y=978.56 & y=958.96 \\
\text { The first bank offer yield the most money. } \\
\text { The difference is } \$ 19.60 .
\end{array}
$$

Section 6: Simplify the following

28) $\left(x^{-2} x^{-3}\right)^{4}$

29) $2 x^{3} y^{-3} \cdot 2 x^{-1} y^{3} . ~ \$ ~ 4 x^{2} y^{0}=4 x^{2}$
30) $\frac{3 x^{3} y^{-1} z^{-1}}{x^{-4} y^{0} z^{0}}=3 x^{7} y^{-1} z^{-1}$

$$
=\frac{3 x^{7}}{y z}
$$

Section 7: Newton's Law of Cooling

Equation: $T=\left(T_{0}-T_{R}\right) e^{-r t}+T_{R}$
$\mathrm{T}=$ temperature of the substance
$T_{R}=$ room temperature
t is time in minutes

$$
\begin{aligned}
& \text { 29) } \frac{2 x^{2} y^{4} \cdot 4 x^{2} y^{4} \cdot 3 x}{3 x^{-3} y^{2}} \\
& \frac{24 x^{5} y^{8}}{3 x^{-3} y^{2}}=8 x^{8} y^{6} \\
& 12 a^{-1} b^{-1}=\frac{12}{a b}
\end{aligned}
$$

35) A pizza is taken from a $425^{\circ} \mathrm{F}$ oven and placed on the counter to cool. If the temperature in the kitchen is
$75^{\circ} \mathrm{F}$, and the cooling rate for this ter $75^{\circ} \mathrm{F}$, and the cooling rate for this type of pizza is $k=0.35$
a. What is the temperature (to the nearest degree) of the pizza 2 minutes later?

$$
\begin{aligned}
T & =(425-75) e^{-0.35(2)}+75 \\
& =248.805 \mathrm{~F}
\end{aligned}
$$

b. To the nearest minute, how long until the pizza has cooled to a temperate below $90^{\circ} \mathrm{F}$?

c. If Matt and Tyler like to eat their pizza at a temperature of about $110^{\circ} \mathrm{F}$, how many minutes should

$$
\begin{aligned}
& \begin{array}{l}
\left.\begin{array}{l}
110 \\
\text { they wait to "dig in"? } \\
-75
\end{array}+425-75\right) e^{-0.35 t}+75 \\
\frac{35}{350}=\frac{350 e^{-0.35 t}}{350}
\end{array}>\frac{1}{10}=e^{-0.35 t}
\end{aligned} \quad \begin{gathered}
\frac{\ln \frac{1}{10}=\frac{-0.35 t}{-0.35}}{t=6.58 \text { minutes }}
\end{gathered}
$$

